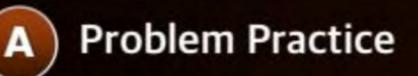
JHE 2026

Mathematics


Basic Maths

Lecture -07

By – Ashish Agarwal Sir (IIT Kanpur)

Important Points in Inequalities

Method of Intervals/ Wavy Curve Method

Homework Discussion

TAH 10

Let a, b, c \in N(a > b) satisfy $c^2 - a^2 - b^2 = 101$ with ab = 72. Then which of the following can be correct? 2ab = 144

b and c are coprime

c is an odd prime

в

(a + b + c) is even

a + b = c + 1

 $c^2 - a^2 - b^2 - 2ab = -43$ $C^{2} - (a+b)^{2} = -43$ $(a+b)^{2}-c^{2} = 43$ (a+6+c) (a+6-c)= 43 prime NO: a+6+c=43a+b-c=1 2c= 42 ~ c=21 MO

a+6=22, ab=72 m Q a=18, b=4 (Byobservation) $a + \frac{12}{a} = 22$ $a^2 - 22a + 72 = 0$ 0=1118 Ans. A, D

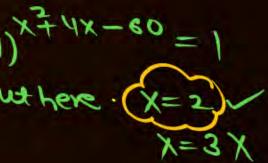
Aao Machaay Dhamaal Deh Swaal pe Deh Swaal

QUESTION [JEE Mains 2016]

The sum of all real values of x satisfying $(x^2 - 5x + 5)^{x^2 + 4x - 60} = 1$ is $a^{x} = 1$ $a^{x} = 0$, $a \neq 0$

A 5

$$x^{2}+4x-60=0$$
 2 $x^{2}-5x+5=4$
 $y^{2}-5x+5=1$
 $x=6,-10$
 $x=6,-10$
 $x=6,-10$
 $x=6,-10$
 $x=6,-10$
 $x=6,-10$
 $x=1,4$
 $x=1,4$

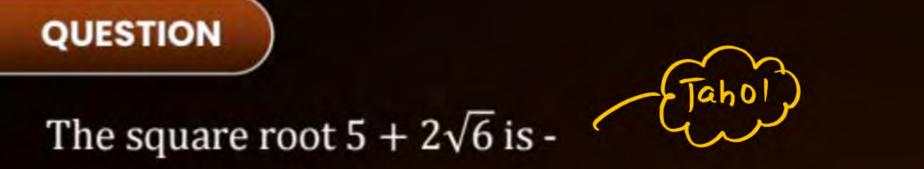

50 5=0

5=0

+2=3

6,-10 -

a = -1(リー)~=1



The square root of $11 + \sqrt{112}$ is -

Joseph Starter	$\sqrt{7} + 2$
B	$\sqrt{7} + \sqrt{2}$
C	$2 - \sqrt{7}$
D	None

$$\int 11 + 2 \int 28$$

= $\int 11 + 2 \cdot 2 \int 7$
= $\int 2^{2} + \sqrt{7} + 2 \cdot 2 \cdot \sqrt{7}$
= $\int 2^{2} + \sqrt{7} + 2 \cdot 2 \cdot \sqrt{7}$
= $\int (2 + \sqrt{7})^{2}$
= $\int 2 + \sqrt{7} = 2 + \sqrt{7}$

 $\mathbf{A} \quad \sqrt{3} + 2$

 $\sqrt{3} - \sqrt{2}$ **B**)

 $\sqrt{2} - \sqrt{3}$ C)


 $\sqrt{3} + \sqrt{2}$ D

If $x = 3 + 3^{1/3} + 3^{2/3}$, then the value of $x^3 - 9x^2 + 18x - 12$ is

$$\begin{array}{c} \mathbf{B} \\ \mathbf{C} \\ \mathbf{B} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{B} \\ \mathbf{C} \\ \mathbf{$$

The number $(7 + 5\sqrt{2})^{1/3} + (7 - 5\sqrt{2})^{1/3}$, is equal to $X = (1 + 5J_2)'^3 + (7 - 5J_2)^3$ $\sum_{x=7+5}^{3} \frac{3}{x^{2}} = 7 + 552 + 7 - 552 + 3(7 + 553)(7 - 552)^{3}(x)$ $\chi^{3} = 14 + 3(49 - 50) \times = 14 + 3(-1) \times$ $\chi^3 = 14 - 3\chi$ $\chi^3 + 3\chi - 14 = 0$ $P(\chi) = \chi^3 + 3\chi - 14$ $\chi^{2}(x-2) + 2x(x-2) + 7(x-2) = 0$ $P(2) = 2^{3} + 3 \cdot 2 - 14 = 0$ $(x-2)(x^2+2x+7)=0$ X=2 or $X^2+2X+7=0$ X=2 Ans. (No real roots)

If $\frac{1}{\sqrt{1}}$	$\frac{\ell}{\overline{0} + \sqrt{14} + \sqrt{15}}$	$\frac{1}{10} = \frac{\sqrt{10} - \sqrt{14} - \sqrt{15} + \sqrt{21}}{k}$, then
A	k = ℓ/2	$\frac{l}{J_{10}+J_{11}+J_{12}+J_{21}} = \frac{J_{10}-J_{11}-J_{12}+J_{21}}{k}$
B	$\ell = k/2$	RK = ((II0 + II) + (III + III)) (((10 + II)) - K = ((I0 + II)) + (III + III)) ((I0 + II)) - K = (I0 + II) + (III + III))
	ℓ = 2/k	$R = (II0 + J_{21})^2 - (JIV + JIS)^2$ $R = 31 + 2J_{210} - (29 + 2J_{210})$
D	None of these	2k=2 2=2 k

If $\frac{4}{2+\sqrt{3}+\sqrt{7}} = \sqrt{a} + \sqrt{b} - \sqrt{c}$, then which of the following can be true-

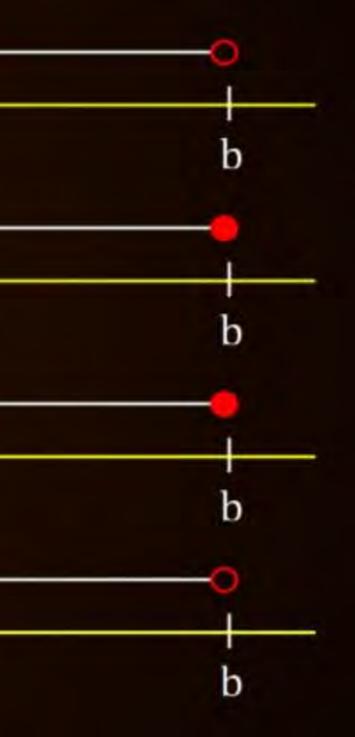
QUESTION [IIT-JEE 1980]

The expression
$$\frac{12}{3+\sqrt{5}+2\sqrt{2}}$$
 is equal to

(A)
$$1 - \sqrt{5} + \sqrt{2} + \sqrt{10}$$

(B) $1 + \sqrt{5} + \sqrt{2} - \sqrt{10}$
(C) $1 + \sqrt{5} - \sqrt{2} + \sqrt{10}$
(D) $1 - \sqrt{5} - \sqrt{2} + \sqrt{10}$

D


(i) $(a, b) = \{x \in \mathbb{R} : a < x < b\}$ Open interval

(ii) $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$ closed interval

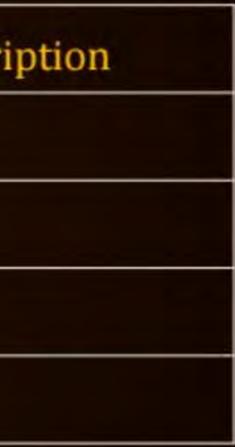
(iii) $(a, b] = \{x \in R: a < x \le b\}$ open closed interval

(iv) $[a,b) = \{x \in \mathbb{R} : a \le x < b\}$ closed open interval.

a

a

a


a

An interval is a subset of real number R. If a, $b \in R \& a < b$ then we can define four types of intervals:

Name	Representation	Descri
1. Open Interval		
2. Closed Interval		
3. Open Closed Interval		
4. Closed Open Interval		

KUCH SYMBOLS

•	Matlab	Included
0	Matlab	not included
()	Matlab	End points Excluded
[]	Matlab	End points included
{}	Matlab	Discrete set of points $X=1,2,3,4 \implies X\in\{1,2,3,4\}$
U	Matlab	Milaa do Mix kardo $A = \{1, 2, 3\}$ AUB= B= $\{2, 4, 5\}$ AUB=
\cap	Matlab	Intersection common ANB= {2}
e	Matlab	Belongs to

,3,4} {1,2,3,4,5}

Inequality	Number line Representation	Int rep
(i) $-3 \le x \le 5, x \in \mathbb{R}$	-3 5	[-3
(ii) $-2 < x \le 5, x \in \mathbb{R}$		(-2
(iii) −1 ≤ ×< 3, x ∈ R		E
(iv) $-2 \le x \le 1, x \in I$		{}
(v) $-3 < x < 5, x \in N$		E.
(vi) $-3 < x < 1, x \in \mathbb{R}$ but $x \neq -1, 0$	-3 12345	5R (-3,

terval or set presentation

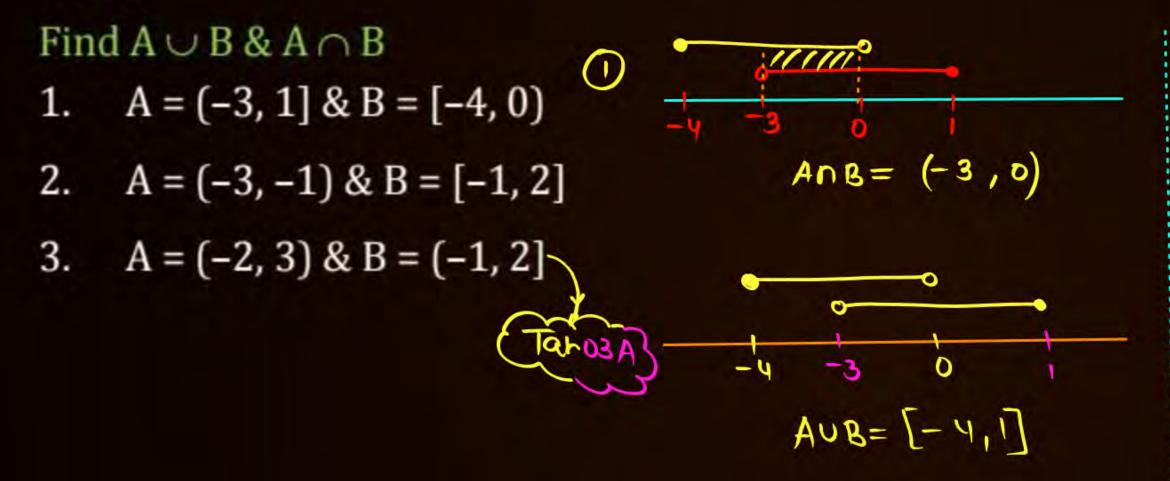
3,5] 2,5]

1,3)

-2,-1,0,1}

1,2,3,45

 $(-3,1) - \{-1,0\}$ $(-3,-1) \cup (-1,0) \cup (0,1)$


Match the Column:

Column-I			Column-II
1.	(-3, 1]	P.	$\begin{array}{c} & & + & + & + \\ & -3 & -1 & 3 \\ & & & \bullet \end{array}$
	{1, 2, 3, 4}	Q.	$\begin{array}{c} \leftarrow & \downarrow \\ -1 & 3 \\ \bullet & \bullet \end{array}$
3.	[-1, 3]	R.	$ \xrightarrow{-3 1} 0 $
4.	(-1,3)	S.	$\begin{array}{c c} & & & & & \\ \hline -1 & 3 & 5 & 7 \\ \hline 0 & 0 & 0 \end{array}$
5.	(-1,3) \cap (5,7]	T.	$\begin{array}{c c} & & & & \\ \hline & & & & \\ 1 & 2 & 3 & 4 \end{array}$
6.	(-3, -1) \cup (-1, 3]	U.	$ \xrightarrow{-1} 3 \xrightarrow{-1} 3 \xrightarrow{-1} 0 -$

ANB= 0 AUB= (-3,2]

(i)

- Jaho3(B) Evaluate the following $(-\infty, 3) \cap [-2, \infty)$

 $[0,3) \cup [2,6]$ (iv)

 $(-4, 1] \cap (-3, 4)$ (iii) (ii) (v) $[2,\infty) \cup (4,\infty)$

$(0, 5] \cap (1, \infty)$ (vi) $[-1, 1] \cup [2, 5]$

Solving an inequality means finding the value of variable for which inequality holds.

Ex: 2+374 274-3 271-sola of megaality

which inequality holds. $\mathcal{E}_{X:}$ $\mathcal{Q}_{X+3} \leq -y + \mathcal{Q}_{X}$ $7 \leq X$

X>7.

B1: We can add (or subtract) any number 'k' on both sides of inequality. Doing this will not change the sign of inequality.

Ex: -2 5 x-4 <-1 Add 4 to each Side of Inel 2 < x < 3. 1 XE[2,3)

Kaam ki Baat

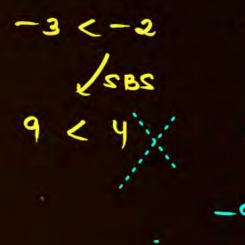
B2: We can multiply (or divide) any non-zero number 'k' on both sides of inequality and sign of inequality will change according to sign of 'k' that is

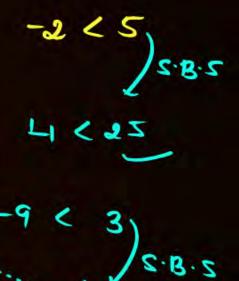
If k > 0 then sign of inequality will remains same, 2

If k < 0 then sign of inequality will get reversed. Reason Ex: 2x+3<7 2x<7-3 -50-10, Ex: 5-3x > 8) Divide -3×78-5 5 () 2x<4 x< yx Jivide by 2 -3X>3 $\chi < 3 = -1$ -3 $\chi \in (-\infty - 1)$

B3: Squaring (raising even power both side) can be clone inequality are non negative. Sx: 37 2 Power 4 (SBS) 34 7 24
B4: Raising both sides to odd power is fine. 81 716.

$$\frac{6x:-3x-2}{285}$$

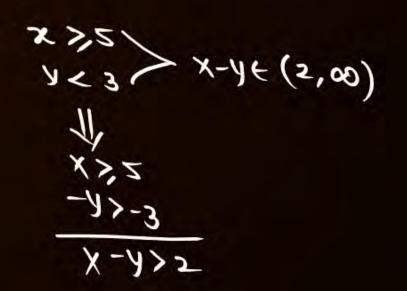

$$\frac{5x:-2x5}{285}$$


$$\frac{6x:-2x5}{285}$$

$$\frac{6x:-2x5}{285}$$

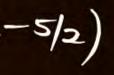
when both sides of

Algebra of Inequalities


Ex:

Inequalities can be added provided they have same sign of inequality. 1. But inequalities can not be subtracted.

Ex:	x < 2	Ex: 2 < 2	€x: × ≤3	Ex:
	Y<3	Y ≤-1	<u> </u>	4
	X+y <5	x+y<1	<u> </u>	x-y
5×:	X>5 X>2 X+Y>7	- 5>-Y>-	7	2-
If $-2 < x < 3$,	5 < y < 7,	find range of	x + y & (x - y).	Ex:
5 <y<7 3<x+y<< td=""><td>10 Multiply</td><td>-2<x<3 -7<-y<-5 -9<x-y<-2< td=""><td></td><td></td></x-y<-2<></x<3 </td></x+y<<></y<7 	10 Multiply	-2 <x<3 -7<-y<-5 -9<x-y<-2< td=""><td></td><td></td></x-y<-2<></x<3 		



>3 y < 2 ×-1 Ð - y > -2 7-2+3 154

Solve: (a) $5x + 2 < 17$	(b) $-2x > 5$	
5 x < 15	×<-5	
x < 3	$X \in (-\infty)$	
XE(-00,3)		

Solve: 5x - 6 > 7x + 8 -6 - 8 > 7x - 5x -14 > 8x 8x < -14 x < -7 $x \in (-\infty, -7)$

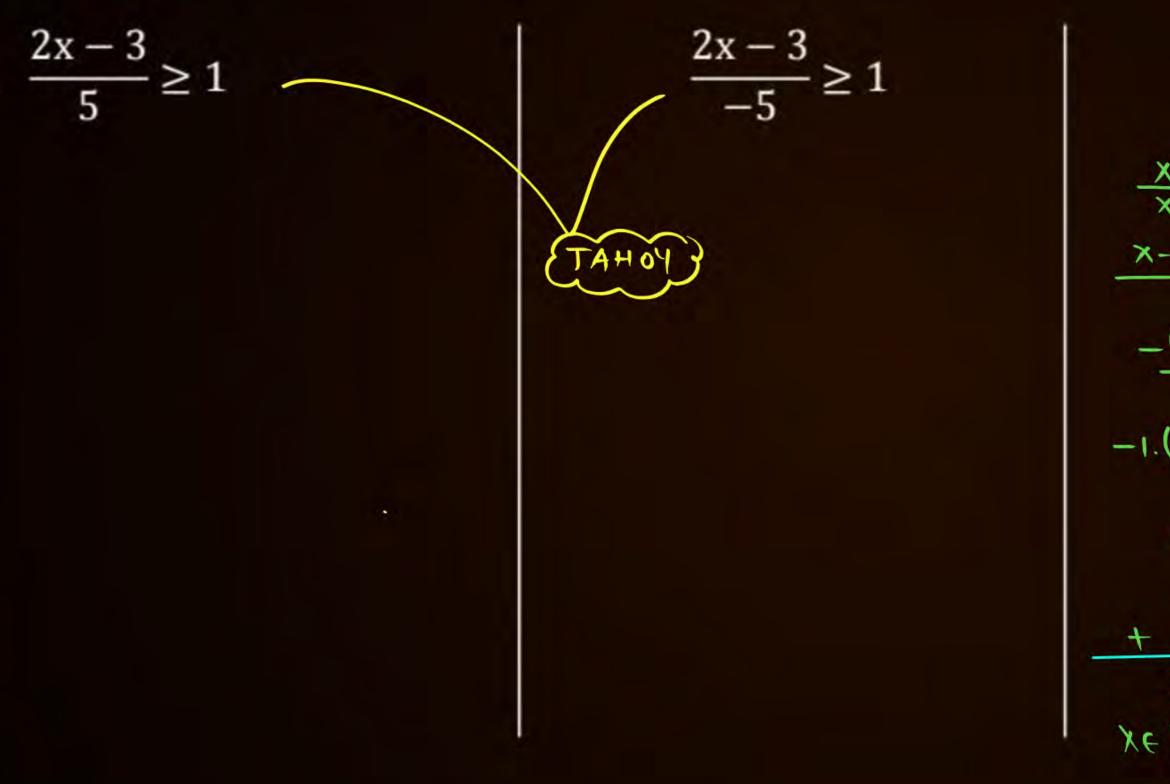
Solve:
$$\frac{(5x-8)}{3} \ge \frac{(4x-7)}{2}$$

$$\frac{5x-8}{3} \ge \frac{4x-7}{-3}$$

$$\frac{5x-8}{-3} \ge \frac{4x-7}{-2}$$

$$\frac{5x-8}{-3} \le \frac{5x-8}{-2}$$

$$\frac{5x-8}{-3} = \frac{5x-8}{-2}$$


$$\frac{5x-8}{-3} = \frac{5x-8}{-2}$$

$$\frac{5x-8}{-2} = \frac{5x-8$$

multiply by -1

7, 4x-7 Ex: 5x-8 -3 10X-16 < -12X+21 $22x \leq 37$ X 5 37 22.

$$\frac{x-3}{x-2} \ge 5$$

$$\frac{-3}{x-2} - 5 \ge 0$$

$$\frac{-3}{x-2} - 5 \ge 0$$

$$\frac{3-5\times+10}{x-2} \ge 0$$

$$\frac{4x+7}{x-2} \ge 0$$

$$\frac{4x+7}{x-2} \ge 0$$

$$\frac{4x-7}{x-2} \ge 0$$


Solve:
$$\frac{1}{3x-2} < 0$$

$$3x-2 < 0$$

$$3x-2 < 0$$

$$x < 2/3 \text{ Ans}$$



In

a variable

Steps Involving Wavy Curve Method

- Step-1 Create Zero in RHS and Simplify. Eak Side zero Banaa O
- Step-2 Convert LHS into Linear Factors. Break polynomial into Rinear factors
- **Step-4** Find the critical points by equating each linear factor to zero and plot them on number line. - Equate each Rimear to O & find X
- Start writing plus minus sign alternate from the right most end of the number Step-5 line.

$$\sum_{x: x^{2} + yx + 8 < 2x} x^{2} = (x - y) < 0 \qquad \frac{+ - + +}{-\infty}$$

$$(x - 2) (x - y) < 0 \qquad -\infty \qquad 2 \qquad y \qquad \infty$$

$$x \in (2, y)$$

Step-3 Make the coefficient of x positive in all the linear factors. In each Rinear factor factor

(For $< 0, \le 0$) select region with -ve

For > or < sign- all critical points are open bracket. Step 7

> For \geq or \leq sign- numerator critical points are closed bracket whereas denominator critical points are open bracket.

- Values of x corresponding to denominator are never included in answer. 1.
- Coefficient of x in every linear factor should be positive if not then make it positive. 2.

"Rational inequality mai cross multiplication nhi karna chahiye jab tak voh factor hamesha positive yaa negative naa ho"

$$(x^{2} + x - 6) (x^{2} - 2x - 8) \ge 0$$

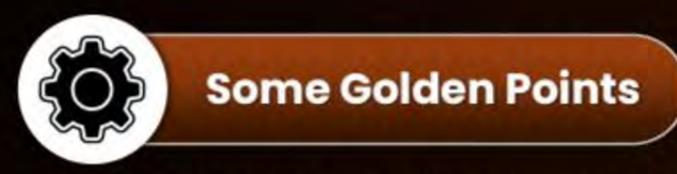
 $(x + 3)(x - 2) (x - 4) (x + 2) \ge 0$

 $x \in (-\infty, -3] \cup [-2, 2] \cup [4, \infty)$

Factorizing a Quadratic $P(x) = ax^2 + bx + c$ $f(x) = Qx^2 + bx + c$

Discriminant
$$(D>0)$$

Step()
 $(D=b^2-4ac)$
 $D<0$
 $D<0$
Step(2) If D>0 find roots $ax^2+bx+c=0$
 $x_1\beta=-b\pm J\frac{1}{2}$

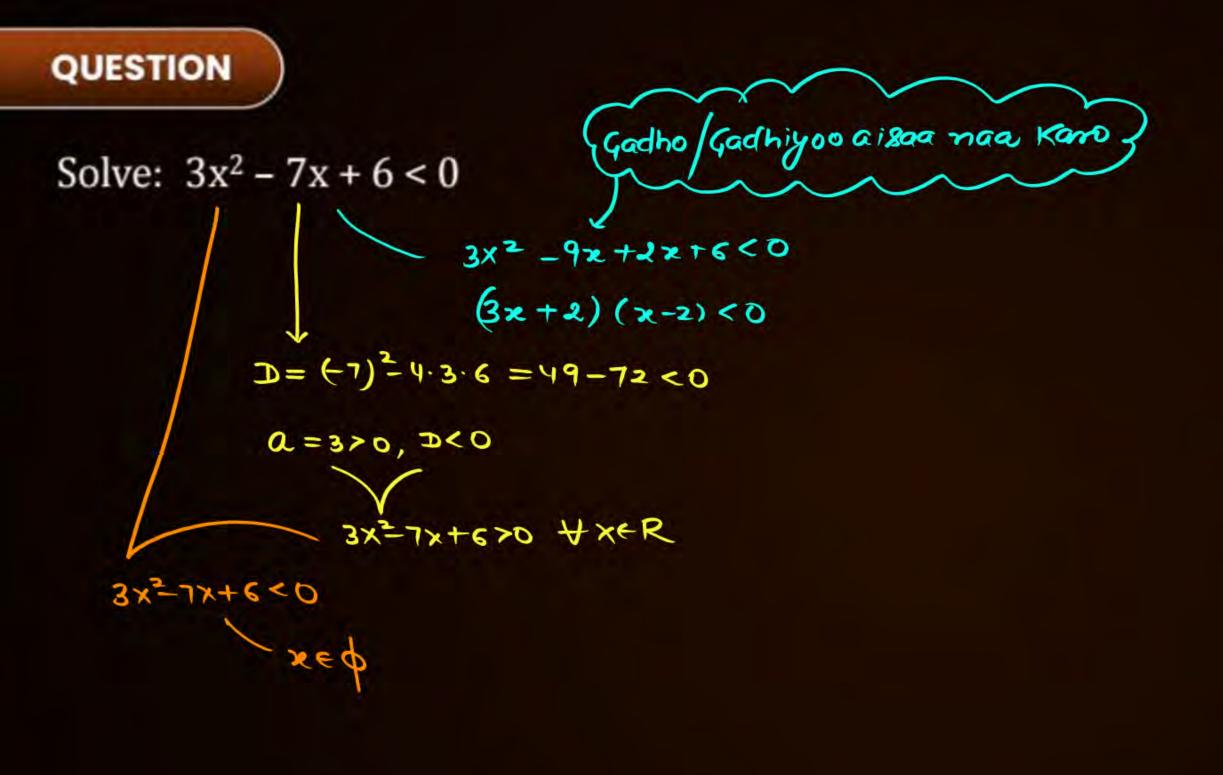

step 3
$$ax^2 + bx + c = Q(x - \alpha)(x - \beta)$$

~ can be splitted In two real linear factors.

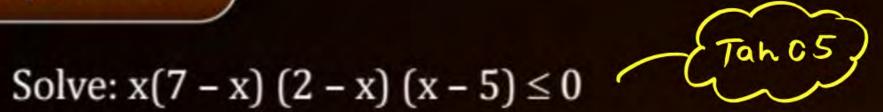
- can not be splitted in two real linear factors

If a > 0 and D < 0 then $y = ax^2 + bx + c > 0$ for all $x \in R$ 1.

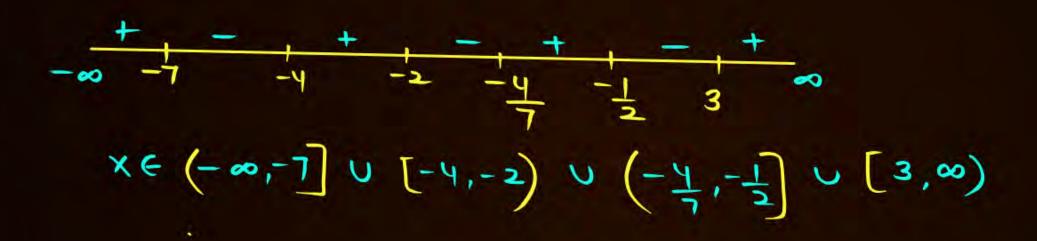
2. If a < 0 and D < 0 then $y = ax^2 + bx + c < 0$ for all $x \in R$ $E_{x}: f(x) = -x^{2} + 2x - 3$ $E_{x}: f(x) = x^2 + x + 2$ D= 1= 4.2=-7<0 $D = (2)^2 - 4 \cdot (-1)(-3)$ = 4-12 = -8<0 a=-1<0, D<0 Q=1>0, D<0 + (x)=x2+x+2>0 + XER f(x)=-x2+2x-3<0 Ex: f(-2)=H-2+2=420 4 XER $\epsilon_{x:}$ f(-1) = -1 - 2 - 3 < 0 $\epsilon_{x:}$ f(-1) = -2 - 3 < 0



Solve: $x^2 - 5x + 2 > 0$ 22-52+2 Step() D= (5) = 4.1.2 = 25-8=17>0 step@ $x^{2}-5x+2=0$ X= 5 ± J25-8 $\left(x-\frac{5+\sqrt{11}}{2}\right)\left(x-\frac{5-\sqrt{11}}{2}\right)>0$ 2 $X = 2 \mp 1 \underline{H}$ $\chi^2 = 5\chi + 2 = 1.(\chi - 5 + Ji)(\chi - 5 - Ji)$ 2+74 2-17 $X \in (-\infty, \frac{2}{2}, \frac{1}{2}) \cup (\frac{2}{2}, \frac{1}{2}, \infty)$



Solve: x(4 - x) (x - 6) > 0 $x - 1 \cdot (x - y) (x - 6) > 0$ x (x - y) (x - 6) > 0


$$X \in (-\infty, 0) \cup (4, \epsilon)$$

Solve: $\frac{(2x+1)(x-3)(x+7)(x+4)}{(7x+4))(x+2)} \ge 0$

Saari Class Illustrations Retry karni Hai

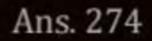
(Home Challenge-01)

If x > y > 0, then show that the expression $\left(\sqrt{2}\left(2x + \sqrt{x^2 - y^2}\right)\left(\sqrt{x - \sqrt{x^2 - y^2}}\right)\right)$

be simplified to $\sqrt{(x+y)^3} - \sqrt{(x-y)^3}$.

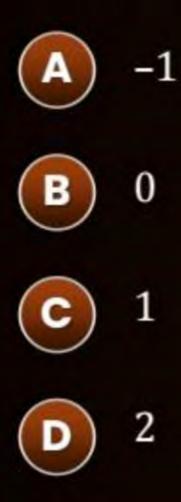
can

No Selection TRISHUL Apnao IIT Jao



If a and b are rational numbers and $a + b\sqrt{2} = 5(\sqrt{2} - 3) + \sqrt{8}$ then find value of $a^2 + b^2 =$

If value of $\left(x + \frac{1}{x} = 5\right)$ then find value of : $x^2 + \frac{1}{x^2}$ (ii) $x - \frac{1}{x}$ (i) (v) $x^3 + \frac{1}{x^3}$ (iv) $x^4 - \frac{1}{x^4}$



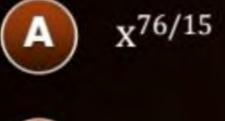
(iii) $x^4 + \frac{1}{x^4}$

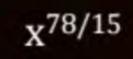
Ans. (i) 23, (ii) $\pm\sqrt{21}$, (iii) 527, (iv) $\pm115\sqrt{21}$, (v) 110

Given $3x^2 + x = 1$, then the value of $6x^3 - x^2 - 3x$ is equal to

Ans. D

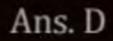
If $\sqrt{9^x} = \sqrt[3]{9^2}$, then x =



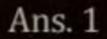


Ans. B

$$\frac{\sqrt{x^3} \times \sqrt[3]{x^5}}{\sqrt[5]{x^3}} \times \sqrt[30]{x^{77}} =$$



В

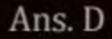


If
$$\frac{9^{n} \times 3^{2} \times (3^{-n/2})^{-2} - (27)^{n}}{3^{3m} \times 2^{m}} = \frac{1}{27}$$
, where m and n are natural number of (m - n) is ______

mbers, then find the value

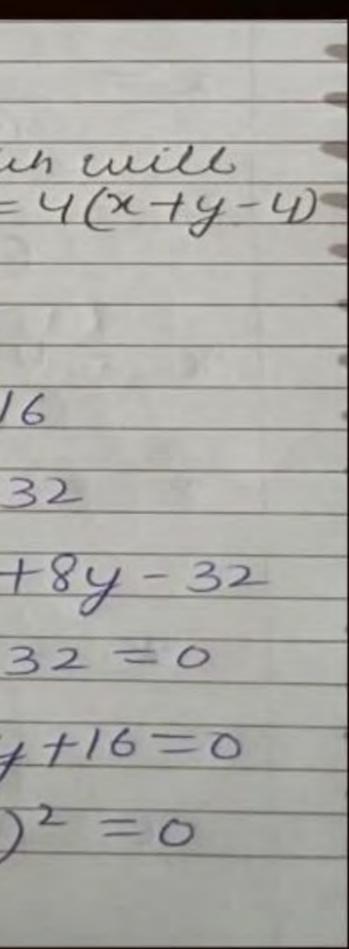


Show that the square of $\frac{\sqrt{25-15\sqrt{3}}}{5\sqrt{2}-\sqrt{38+5\sqrt{3}}}$ is a rational number.



If $5^{10x} = 4900, 2^{\sqrt{y}} = 25$ then the value of $\frac{(5^{(x-1)})^5}{4^{-\sqrt{y}}}$ is

Solution to Previous TAH


TAH 01

The number of real number pairs (x, y) which will satisfy the equation $x^{2} - xy + y^{2} = 4(x + y - 4)$ is

Ans. 1

26/4/25 The no of real no pairs (x, y) which will Storfy the equation x2 - Xy+y2 = 4(x+y-4) is = Ques $\chi^2 - \chi y + y^2 = y(\chi + y - 4)$ $\chi^2 - \chi y + y^2 = 4\chi + 4y - 416$ $2x^2 - 2xy + 2y^2 = 8x + 8y - 32$ $x^2 + \kappa^2 - 2\chi y + y^2 + y^2 = 8\chi + 8y - 32$ $(x - y)^2 + x^2 + y^2 - 8x - 8y + 32 = 0$ $(x-y)^2 + x^2 - 8x + 16 + y^2 - 8y + 16 = 0$ $(x-y)^2 + (x-y)^2 + (y-y)^2 = 0$

Factorize the following				
(i)	$x^3 - 13x - 12$			
(ii)	$x^3 - 7x - 6$			
(iii)	$x^3 - 6x^2 + 11x - 6$			
(iv)	$2x^3 + 9x^2 + 10x + 3$			

(v)
$$x^3 - 9x^2 + 23x - 15$$

(vi)
$$2x^3 - 9x^2 + 13x - 6$$

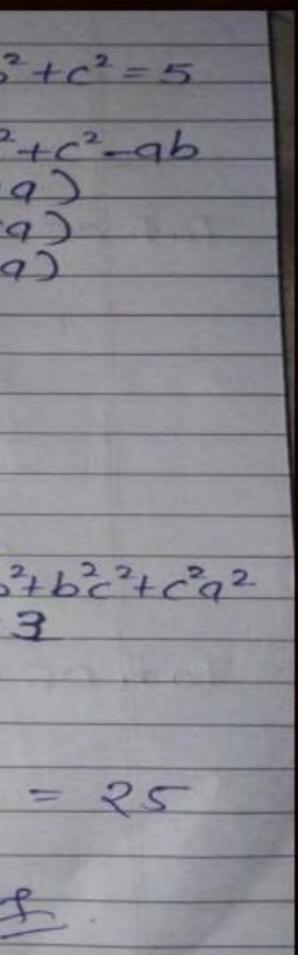
(vii) $x^3 - 4x^2 + 5x - 2$

TAH 02

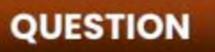
	Г		J	l	
			L		
		4			
	L,				

[x + 1)(x - 4)(x + 3)][Ans. (x + 2)(x - 3)(x + 1)] [Ans. (x - 1)(x - 2)(x - 3)] [Ans. (x + 1)(x + 3)(2x + 1)][Ans. (x - 1)(x - 3)(x - 5)] [Ans. (x - 1)(x - 2)(2x - 3)] [Ans. $(x-2)(x-1)^2$]

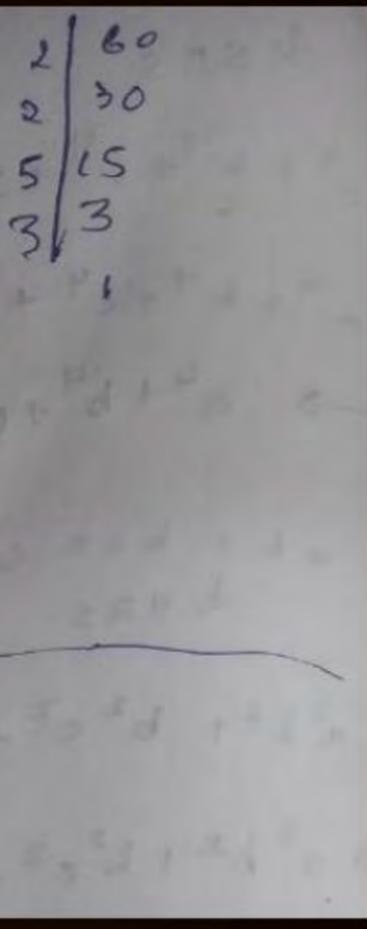
ptaho2] (i) x - 7x - 6 Ox3-13x-12 $\chi^{2}(x+1) - \chi(x+1) - 6\chi(x+1)$ (x+1) (x-3) (x+1) -> 22(x+1) - x (x+1) - 12(x+1) $\Rightarrow (x+1)(x^2-x-12)$ -. (x+1) (x-4) (x+3) (D) 2x3+9x2+10x+3 9. x3-6x2+11x-6 $=2x^{2}(x+1)+7x(x+1)+3(x+1)$ $x^{2}(x-1) - 5x(x-1) + 6(x-1)$ = (x+1)(x+3)(2x+1)(x-1) (x-2) (x-3) A 2x3-9x2+137-6 O x3-9x2+232-15 =72x2(x-1)-7x(x-1)+5 (x-1) >x2(x-1)-8x(x-1)+5x(x-1) >(x-1)(x-2)(x-3) $\Rightarrow (x-1)(x-3)(x-5)$ $M x^3 - 4x^2 + 5x - 2$ $= \chi^{2}(\chi - 1) - 3\chi(\chi - 1) + 2v(\chi - 1)$ REDMI -=> (x-1)(x-1)(x-1)


TAH 03

Given that a + b + c = 3, $a^2 + b^2 + c^2 = 5$ and $a^3 + b^3 + c^3 = 7$, then the value of $a^4 + b^4 + c^4$ is equal to



Tah 03 -> Solution' -> atbtc = 3, a2+b2+c2=5 $q^3 + b^3 + c^3 = 7$ $a^{3}+b^{3}+c^{3}+3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab)$ -bc-cg) 7 + 3qbc = 3(5 - qb - bc - cq)7 + 3qbc = 15 - 3(qb+bc+cq)3qbc+3(qb+bc+cq) = 15-73qbc + 3(qb + bc + cq) = 83abc = 8 - 6 = 2a+b+c=3SBS $(a+b+c)^2 = 3^2$ $q^{2}+b^{2}+c^{2}+2(qb+bc+cq)=9$ $5 + 2(qb+bc+cq) = 9 |q^2b^2+b^2c^2+c^2q^2$ ab+bc+ca=4=3=3abtbc tca = 2 $(q^2+b^2+c^2)^2=(5)^2$ $a^{4}+b^{4}+c^{4}+2(a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2})=25$ $q^{4}+b^{4}+c^{4}+2x3=25$ 9+1++++++= 25-6 = 19 Amg



Find the square root of $10 + \sqrt{24} + \sqrt{60} + \sqrt{40}$.

AH-DY V10 + J24 + J60 + J40 2 J 10+ 2 JZXJ3+2XJ5×J3+2XJE×J5 20 = $(J_{3})^{2} + (J_{5})^{2} + (J_{5})^{2} + 2(J_{5})^{2} + 3J_{5}J_{5}J_{5} + J_{5}J_{5}$ 2 $= (J_{3}+J_{5}+J_{2})^{2}$ = J3+J5+J2/1/m

TAH 05

If $a_1 + a_2 + a_3 + a_4 = -3$ and $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 63$ then find value of : $a_1a_2 + a_2a_3 + a_1a_3 + a_3a_4 + a_1a_4 + a_2a_4 = ?$ (where $a_1, a_2, a_3, a_4 \in R$)

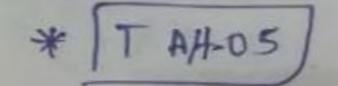
If $a_1 + a_2 + a_3 + a_4 = -3$ and $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 63$ then find value of !-

a1a2 + a2a3 + a1a3 + a3ay + a1ay + a2ay =? $a_1 + a_2 + a_3 + a_4 = -3$ (Tah - 05) (where a, 1a2, a3, ay ER)

CS.B.S

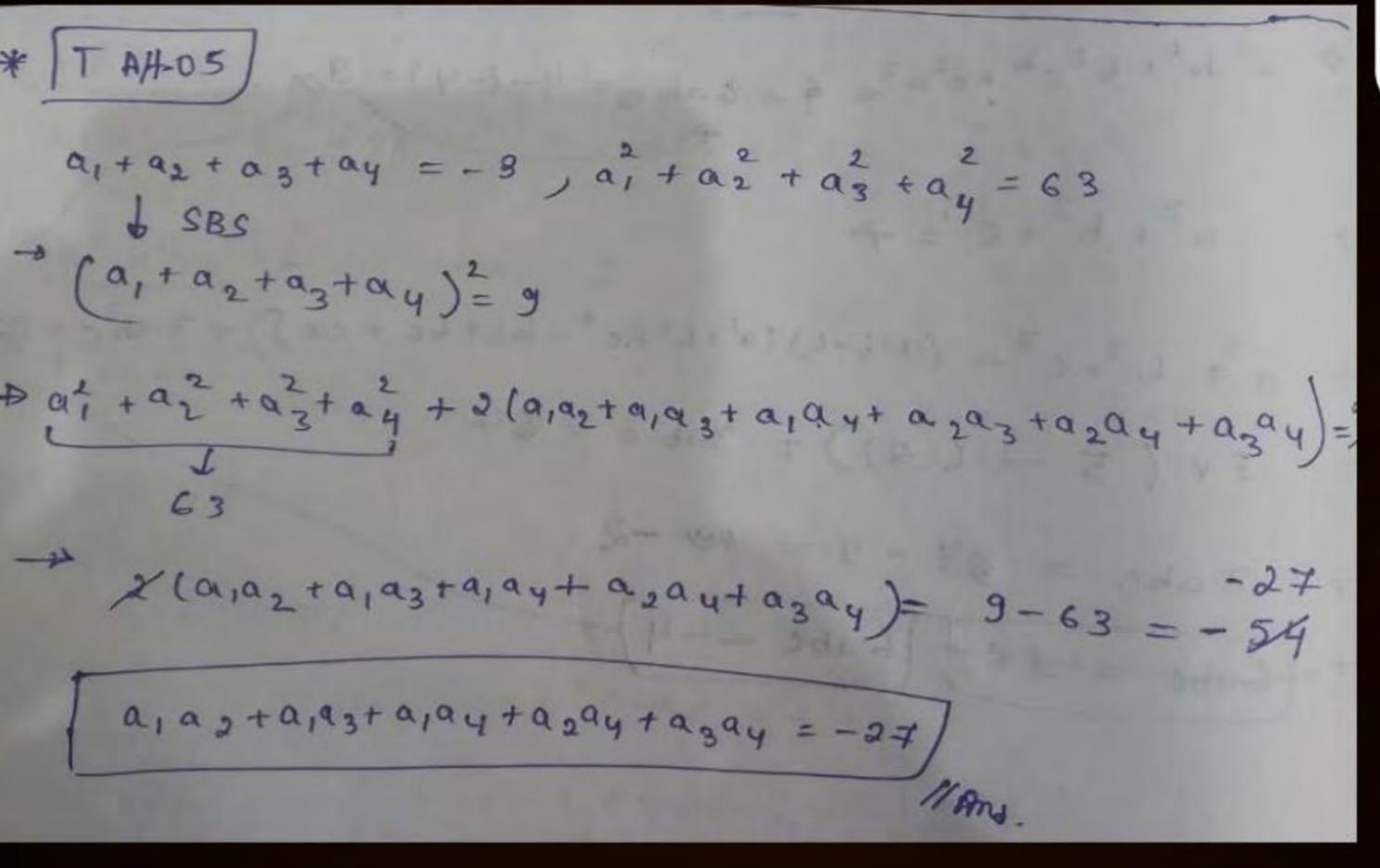
301

ai + as + ag + ag + 2 (a1a2 + a1a3 + a1a4 + a2 a3 + a2a4 + a3a4) = 9


63 + 2 (a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4) = 9

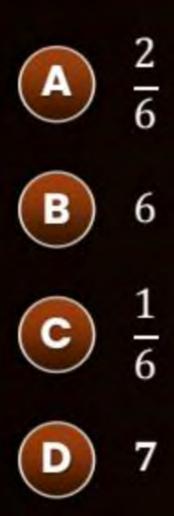
 $(a_1a_2 + a_1a_3 + a_1a_4 + a_2a_3 + a_2a_4 + a_3a_4) = 9 - 63 = -\frac{54}{2}$

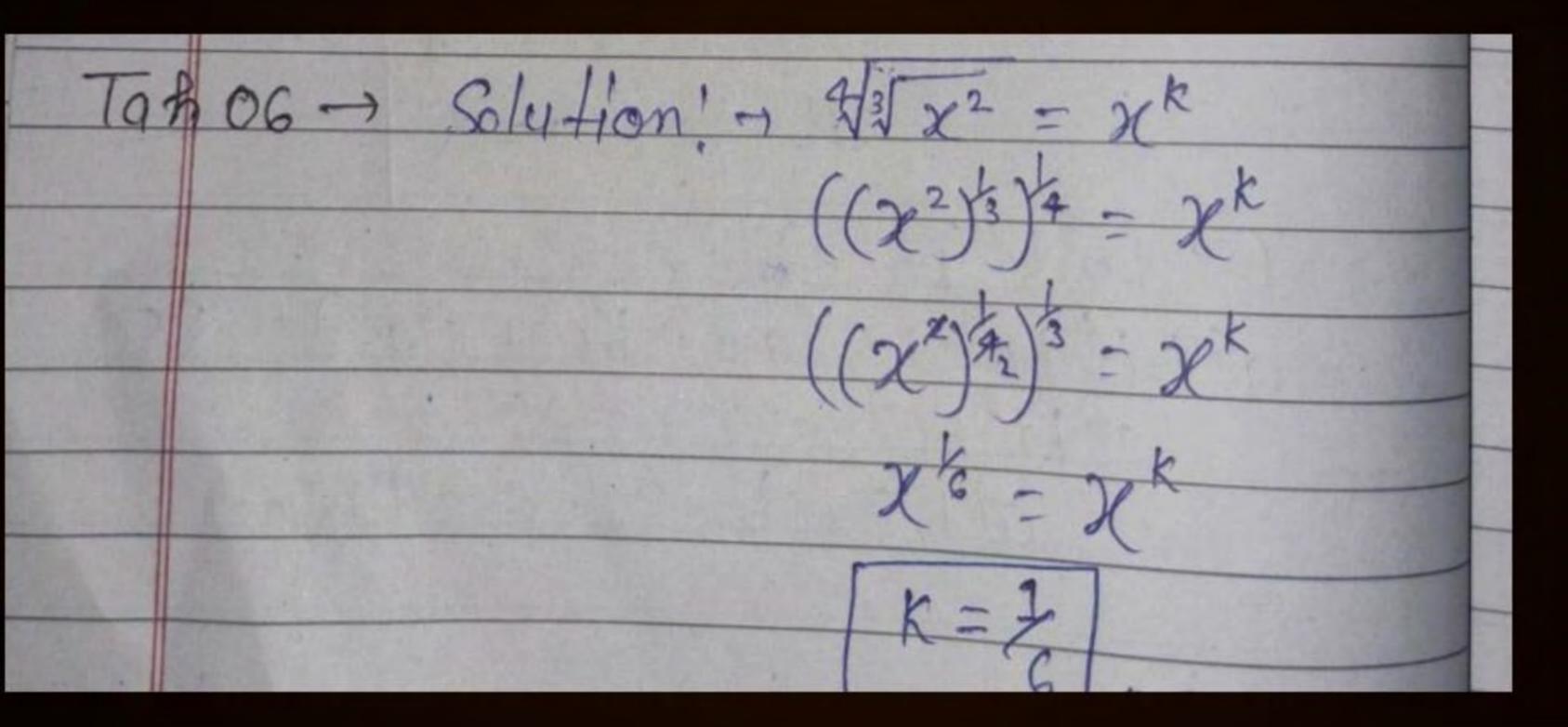
= (-27) Ans


+azay)

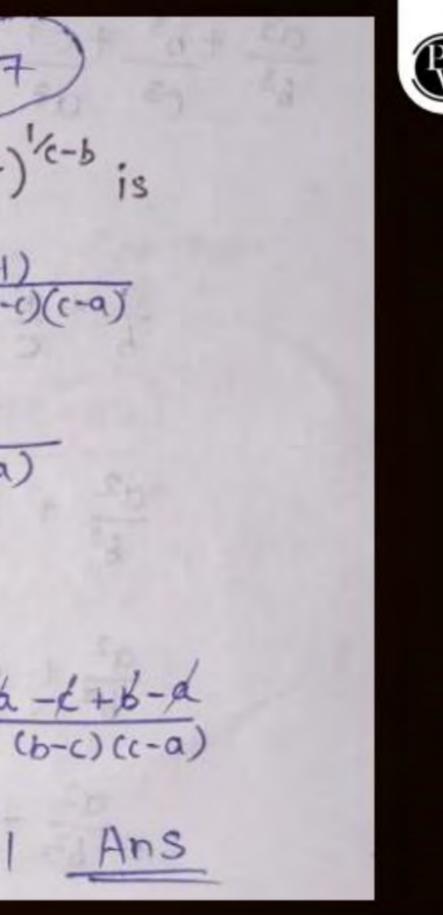


 $a_1 + a_2 + a_3 + a_4 = -9$, $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 63$ b SBS $a_1 + a_2 + a_3 + a_4$)² = 9 $\Rightarrow a_1^2 + a_2^2 + a_3^2 + a_4^2 + 2(a_1a_2 + a_1a_3 + a_1a_4 + a_2a_3 + a_2a_4 + a_3a_4) =$


a, a 2 + a, a 3 + a, a 4 + a 2 a 4 + a 3 a 4 = -27



If
$$\sqrt[4]{\sqrt[3]{x^2}} = x^k$$
, then k =


TAH 07

The numerical value of $(x^{1/a-b})^{1/a-c} \times (x^{1/b-c})^{1/b-a} \times (x^{1/c-a})^{1/c-b}$ is (a, b, c are distinct real numbers)

The numerical value of (Tah-07) (x1/a-b) 1/a-c x (x1/b-c) 1/6-a x (x1/c-a) 1/c-b is $\chi^{(-1)}_{(a-b)(c-a)} \times \chi^{(-1)}_{(a-b)(b-c)} \times \chi^{(-1)}_{(b-c)(c-a)}$ Sol $\frac{(-1)}{(a-b)(c-a)} + \frac{(-1)}{(a-b)(b-c)} + \frac{(-1)}{(b-c)(c-a)}$ $\frac{(-1)(b-c) + (-1)(c-a) + (-1)(a-b)}{(a-b)(b-c)(c-a)}$ $\frac{(c-b) + (a-c) + (b-a)}{(a-b) (b-c) (c-a)} = n (a-b) (b-c) (c-a)$

TAH 08

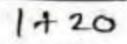
$$\sqrt{5 + \sqrt{5 + \sqrt{5}} + \dots \infty}$$
 is equal to

$$(\mathbf{B}) \quad 5 + \sqrt{3}$$

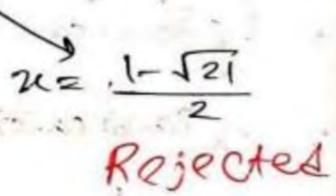
$$\frac{1+\sqrt{21}}{2}$$

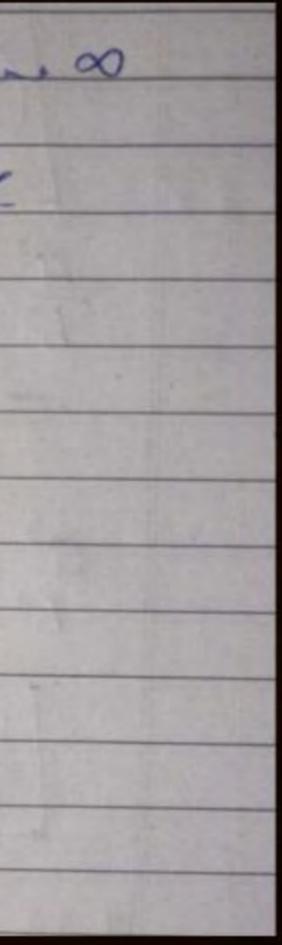
D

$$\frac{\sqrt{5}-1}{2}$$



15+15+15+....0 TAH-81 to 1. ranal 15 05 14/21 6 5+15 0 15-1 3 Salut let 5+5+ = X => 5+x =x S-13.5. 54x = x2 2.1 1 = 121 $\chi^2 - \chi - 5 = 0$. 21.2: 1452 1. Ans: @ 14521 orccepted 1 81 La


1 10 24 1


TAH 8 by Reed west bengal

5 . . .

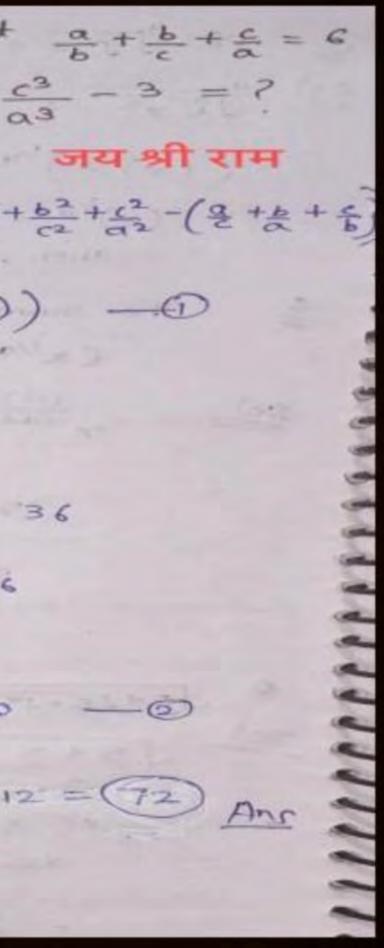
15+15+15+15+~~~ = X 15+x = x $5+x = x^2$ $\chi^2 - \chi - 5 = 0$ x=1±11+20 2×1 2-1±121 20- 1+521 2

TAH 09

If a, b, c \in R and a, b, c \neq 0 such that $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 6$ and $\frac{b}{a} + \frac{c}{b} + \frac{a}{c} = 8$, then $\frac{a^3}{b^3} + \frac{b^3}{c^3} + \frac{c^3}{a^3} - 3$ is equal to

[AH-9! If a, b, c e R and a, b, c 70 such that 원+분+ 등 = 6 & 분+ 등 + 원 = 8 then 유카 등 + 63 + 63 정 - 문 - 문 - 등 - 원 - 문 - 문 - then 유카 등 - 63 + 63 + 63

Solution = (3 + 5 + 5) (3 + 5) - 3 (3) (5) (5) (5) = (3 + 5 + 5) (3 + 5) + 5 + 5 + 5 + 5 + 5) = (3 + 5 + 5) (-3 + 5) + 5 + 5 + 5 + 5 + 5) = (3 + 5 + 5) = (3 + 5 + 5) = (3 + 5


 $\frac{p \cdot d}{2} \stackrel{\text{mo}}{=} \frac{m \cdot \omega}{2};$ $= \frac{(2 + \frac{1}{2} + \frac{1}{2})}{(2 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2})} (\frac{2 + \frac{1}{2}}{2} + \frac{1}{2} + \frac{1}{2}) - (\frac{2}{2} + \frac{1}{2} + \frac{1}{2}))$ $= 6 \times (20 - 8)$

= 6 × 12 = 72, (Ans.)

-3=?? TAH 09 by Reed west bengal

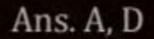
It a,b,c ER and a,b,c = 0 Such that a+b+c=6 and $\frac{b}{a} + \frac{c}{b} + \frac{a}{c} = 8$, then $\frac{a^3}{b^3} + \frac{b^3}{c^3} + \frac{c^3}{a^3} - 3 = ?$ **TAH 09** $\frac{a^{3}}{b^{3}} + \frac{b^{3}}{c^{3}} + \frac{c^{3}}{a^{3}} - 3 = \left(\frac{a}{b} + \frac{b}{c} + \frac{a}{a}\right) \left(\frac{a^{2}}{b^{2}} + \frac{b^{2}}{c^{2}} + \frac{b^{2}}{a^{2}} + \frac{c^{2}}{a^{2}} - \left(\frac{a}{b} + \frac{b}{a} + \frac{c^{2}}{b}\right)$ $\frac{a^{3}}{b^{3}} + \frac{b^{3}}{c^{3}} + \frac{c^{3}}{a^{3}} - 3 = 6 \cdot \left(\frac{a^{2}}{b^{2}} + \frac{b^{2}}{c^{2}} + \frac{c^{2}}{a^{2}} - (8) \right) - O$ $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 6$ 2.8.2 $\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} + 2 \cdot \frac{a}{c} + 2\frac{b}{a} + 2\frac{c}{b} = 36$ $\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} + 2\left(\frac{a}{c} + \frac{b}{a} + \frac{c}{b}\right) = 36$ $\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} +$ $\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} = 36 - 16 = 20 - 0$ $\frac{a^3}{b^3} + \frac{b^3}{c^3} + \frac{c^3}{a^3} - 3 = 6 (20 - 8) = 6 \times 12 = (72) Ang$

TAH 10

Let $a, b, c \in N(a > b)$ satisfy $c^2 - a^2 - b^2 = 101$ with ab = 72. Then which of the following can be correct?

b and c are coprime

c is an odd prime



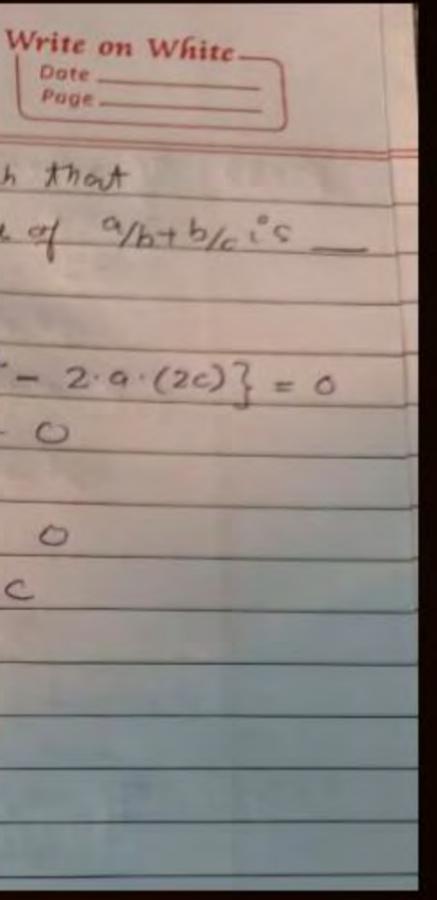
(a + b + c) is even

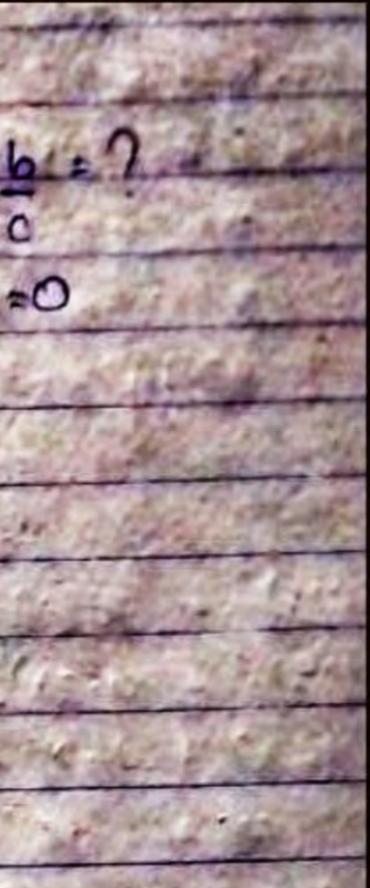
a + b = c + 1

Let. a, b, CEN (a>b) satisfy (2012 b'=10) now, with ab=72. Then which of the fillowing G+6=22 combe convect? m 72 +6 = 22 01 72+62 =226 & bound c are prime er, 67-226 +72=0: G c is an add prime. 0, 6'- 186-46 472=0. @ (a+6+c) is even. or, b(b-18) -4(b-18)=0 @ A+6 = C+1. or, (6-18) (6-4)=0 : b-19 =0 07, 6-4=0 or, 6=18. 01 C2 = ci24 6 2 4 101 ______ then, a= 72 or, a = 4 C2 = C+2 + 62 +101 Discanded Accepted 1076 (Quad) (2+144= (E++)2+101 11.15 a. (a+ 6)2- c2 = 144-101 A= 18, 6=4, C=21. A. 65 - 12 23 10 A, (0+6+c) (0+6-c) = 43 (+ b, c are coprime. V (H(F=1) GSRI UNI () → C is an and prime × (C=21=3+7) 1. C at bac = 43 ... but (a+b-c) 743. (-> (a+6+c) is even. x [:" a+6+c=43=000d] since it has to Centermen 20= 42 be the smaller one. B-+ a+6= C+1 ~ [" a+6= 22 = C+1] 04, C= 21 Ans => (a) & (a) TAH 10 alsa. : at 6+21=43 . Ans > @ & @. ab=72 . . . 01, 01+6= 43-21 a, a= 72 on at = 22

07,664 then . a = 72 er, 0:=18 : a= 18 : 16 = 4. . 1- 10 D - 2-400 KD by Reed West Bengal

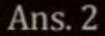
Solution to Previous KTKs

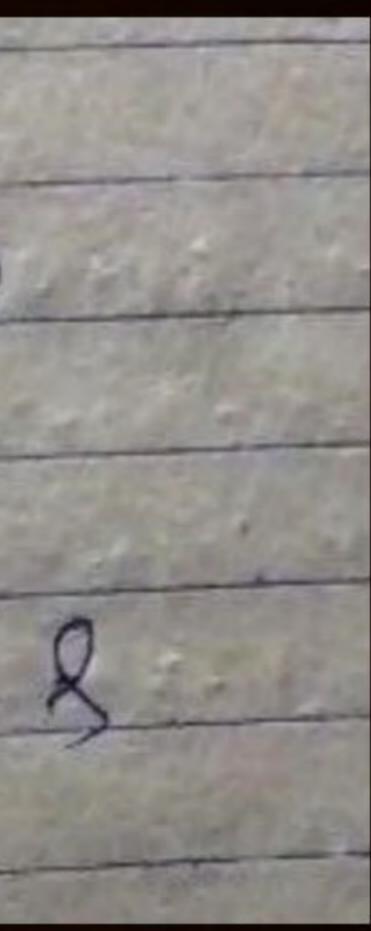

If a, b, & c are three non zero real numbers such that $5a^2 + 4b^2 + 4c^2 - 8ab - 4ac = 0$ then the value of a/b + b/c is _____

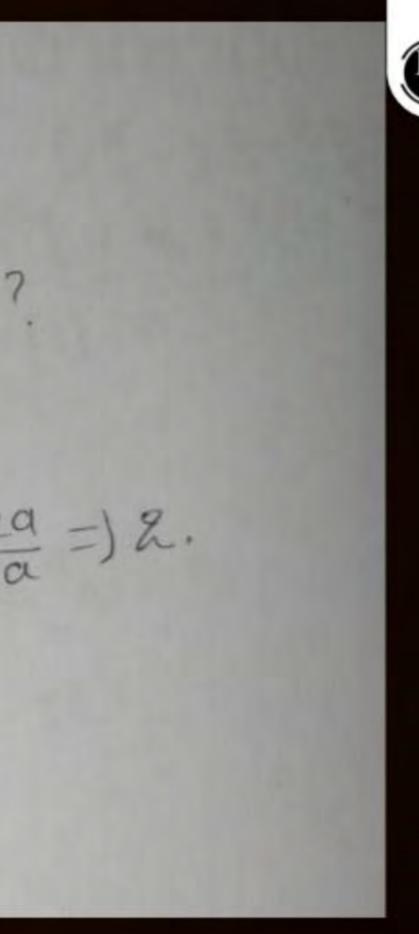

Ans. 3

1×-2 lecture 6 a, b f C are three non zero real numbers such that 5 d2 + 4b2 + 4c2 - 89b - 4 ac= 0 then the value of a/b+b/cis 5a2+4b2+4c2-8ab-4ac=0 4a + a2 + 4b2 + 4c2 - 8ab - 4ac = 0 $\frac{(2a)^2 + (2b)^2 - 2(2a)(2b)}{(2a)(2b)} + \frac{(2a)^2 - 2(2a)(2c)}{(2c)^2} = 0$ $(2a-2b)^2 + (a-2c)^2 = 0$ 70 70 201 = 26 a -2c= 0 a -) b a = 2 c 2c = 1 b= 2 9+0 7

a, b, c c R - fo} 502+ 467+ 402- 806-490:0 40° +462 - 8 ab + 024462 - 4950 Ъ $(2a)^{2} + (2b)^{2} - 2(2q)(2b) + a^{2} + (2c)^{2} - 2 \cdot a \cdot 2c = 0$ (20-2b)2+ (a-2c)2=0 70 70 · /2a=/2b 0:20 a2 6 g = C 902 0.4 24 2 9 - 2 1 + 2 = 3 8 94 D ь C



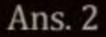

If a, b, & c are three non zero real numbers such that $2a^2 + b^2 + c^2 - 2ab - 2ac = 0$ then the value of $\frac{a+b}{c}$ is equal to _____

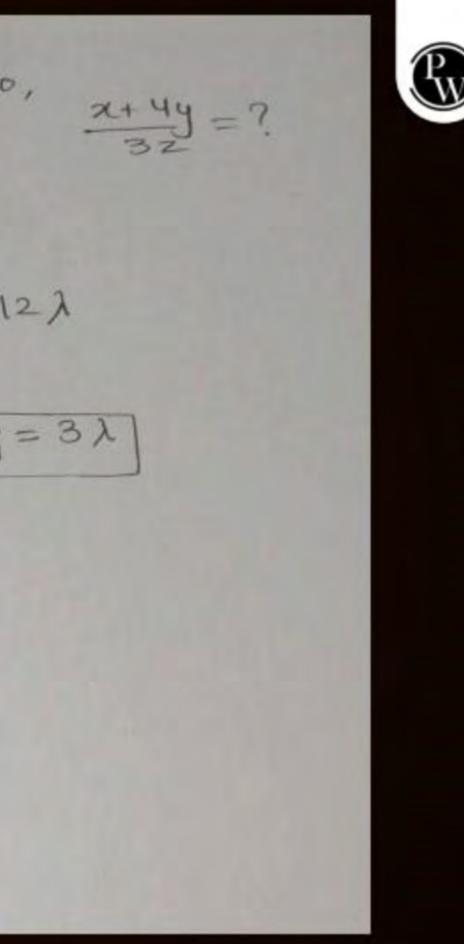

202 + 62 + 62 - 2010 - 296 20 02+62-2016+ 02+02-20(=0 $(a-b)^{2} + (a-c)^{2} = 0$ 1. asb asc 20 22 2 9+6-2 ata =



KTK-2

a, b, c e Ro $2a^2 + b^2 + c^2 - 2ab - 2ac = 0$, a + b = 7. $a^2 d - 2ab + b^2 + a^2 - 2ac + c^2 = 0$ $(a-b)^{2} + (a-c)^{2} = 0$ $(a-b)^{2}=0$ $(a-c)^{2}=0$ frf: $\frac{a+a}{a}=)\frac{2a}{a}=)2$. a-b=0 a-c=0 a=b a=c 1a=b=c]

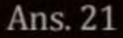



If $x^2 + 16y^2 + 9z^2 = 4xy + 12yz + 3zx$ then find the value of $\frac{x+4y}{3z}$. (Given x, y, z $\in R_0$)

KTK 3 $x^2 + 16y^2 + 9z^2 = 4xy + 12yz + 3zx$, $x, y, z \in R_0$, =) x = 2 · 2 × 4 x2 + (4y)2 + (3z)2 - x.4y - 4y.3z - 3z.x = 0 gt is posissible <=> x = 4y = 3z = 12λ X=12X 4y=121=) y=32 12 x+44 3z= 121 ろこ IZ=41 =) 12×+0/12× 121 $=) \frac{24X}{12X}$ =) 2. Inf Q.E.P

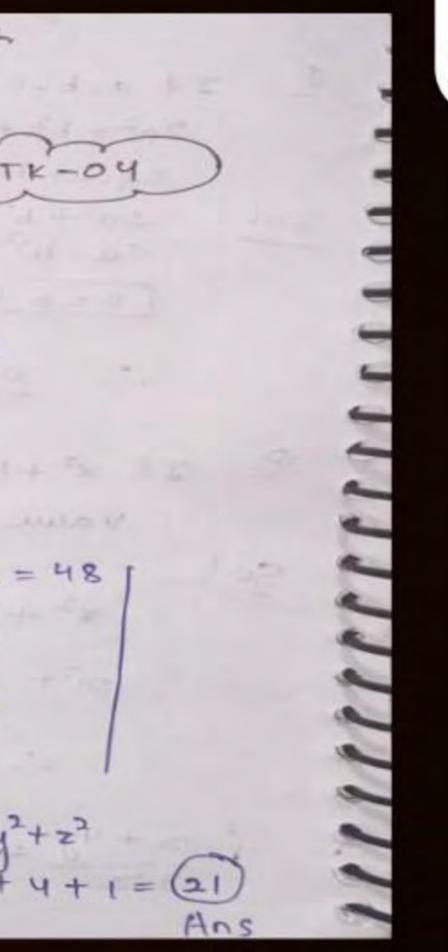
$$\frac{kTK^{-3}}{4} = \frac{1}{32} \frac{1}{3} \frac$$

then.


37 = 0. 1 $\alpha = 0.$

KTK 3,4 by Reed west bengal

If the real numbers x, y, z are such that $x^2 + 4y^2 + 16z^2 = 48$ and xy + 4yz + 2zx = 24, what is the value of $x^2 + y^2 + z^2$?

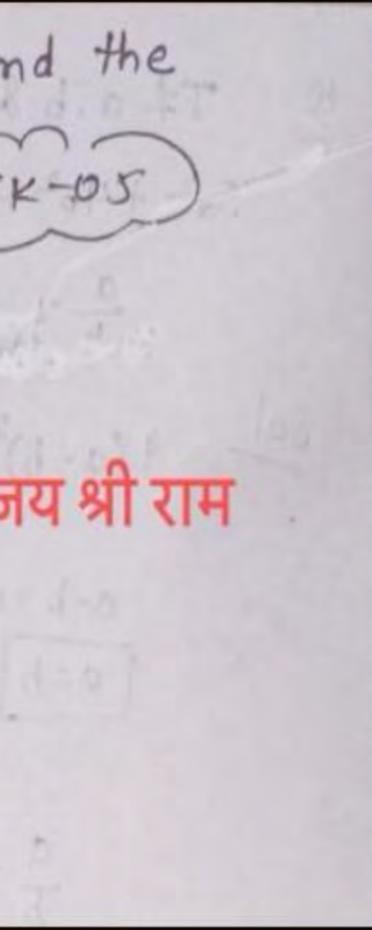


KTK-4! If the real no.s n.y, 2	are such that
22-+ 442 + 1622 = 48 & 2y.	+492+222 = 20
then n2+ y2+ 22 = ?	
Sol"1 x2+ 4y2+16-22=48-0	29+492+222
$\omega - (2 \times \omega)!$	
n2+ 4y2+16-22- 2(2)+4y2.	+22x) = 48 - (2)
$ = \frac{1}{2} + \frac$	e _ c a = (
$\frac{\sqrt{4}}{\left[24 \pm 29\right] \pm 42}$ $\frac{\sqrt{4}}{\left[24 \pm 29\right] \pm 42}$ $\frac{\sqrt{4}}{\left[24 \pm 49\right] \pm 492}$ $\frac{\sqrt{4}}{\left[29\right] \pm 492}$ $\frac{\sqrt{4}}{\left[29\right] \pm 42}$	$\frac{n_{02}}{n^{2}+y^{2}+2^{2}}$ $= n^{2}+(x^{2})^{2}+($

......

ŀ 4. 2 = 24 - GD 2×24) 0. 0. (×)2 212 4 71 2 21 (Ans)

$$\begin{array}{c} @ \quad \text{If the real numbers } x,y, iz \text{ are duch that} \\ & n^{2} + y_{0}^{2} + 16z^{2} = 48 \quad \text{and} \quad xy + y_{0}z + 2zx = 24 \\ & \text{what is the value of } x^{2} + y_{0}^{2} + z^{2} ? \\ & x^{2} + y_{0}^{2} + 16z^{2} = 2(xy + 4yz + 2zx) \\ & x^{2} + y_{0}^{2} + 16z^{2} - 2xy - 8yz - 4zx = 0. \\ & x^{2} + (2y)^{2} + (4z)^{2} - xy_{0} - 8yz - 4zx = 0. \\ & x^{2} + (2y)^{2} + (4z)^{2} - xy_{0} - 2y \cdot 4z - 4zx = 0. \\ & \vdots \quad \boxed{x = 2y = 4z} \\ & (2y)^{2} + 4y^{2} + 16 \cdot (\frac{y}{2})^{2} = 48. \\ & (2y)^{2} + 4y^{2} + 8y^{2} = 48 \\ & (2y)^{2} + 4y^{2} + 8y^{2} = 48 \\ & y^{2} - 4y_{0} + 16 \cdot (\frac{y}{2})^{2} = 48. \\ & y^{2} - 4y_{0} + 16 \cdot (\frac{y}{2})^{2} = 48. \\ & y^{2} - 4y_{0} + 16 \cdot (\frac{y}{2})^{2} = 48. \\ & y^{2} - 4y_{0} + 16 \cdot 16z^{2} = 48 \\ & y^{2} - 4y_{0} + 16z^{2} = 16. \\ & y^{2} - 16 \\ \hline & 16z^{2} - 4y_{0} - 32 \\ & 16z^{2} - 4y_{0} - 32 \\ & 16z^{2} - 16. \\ \hline & y^{2} - y^{2} \\ & y^{2} - y^$$



If x, y, z are real numbers then find the minimum value of $4x^2 + y^2 + 9z^2 - 4x - 2y - 6z + 17$.

KTK-51 If x, y, 2 one real numbers then And the mm. value of un2+y2+ 9=2-4x-2y -62+17.

the second is a property of the second SOMT 4n2+y2+ 922- 4x-2y-62+17=E E= (2n)2+1y2+(32)2-2.22.1-2-9.1-2.32-1+H $E = [(2\pi)^2 - 2 \cdot 2\pi \cdot 1 + 1] + [(32)^2 - 2 \cdot 32 \cdot 1 + 1] + (y^2 - 2y + 1]$ 20 - 121-17 - 3 E = (2x-1)2+ (32-1)2+ (y-1)2+14 >0 >0 >0 - Elmin = 0+0+0+0+14. = 14. (Ans.)

Charles in the second s KTK 5 by Reed west bengal

